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        We will study the existence of a global positive solution of equation (1). The matters of 

existence and non-existence of global solutions for different classes of differential equations and 

inequalities play an important role both in theory and applications, that is why they have always 

been a cause for constant interest of mathematicians. Interest in such problems arose after paper 

[1]. After this work, many authors began to investigate the question of the existence of global 

solutions of various types of equations with non-linearity’s of various types.   

        A solution of equation (1) is defined as a function )()(),( ,
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The main result is the following theorem. 

Theorem. Let  3n , ),( txA  satisfies the condition (2). Then under the assumption (H) 

equation (1) has no positive solution in Q . 
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